
ARTICLE IN PRESS

Control Engineering Practice ] (]]]]) ]]]–]]]
Contents lists available at ScienceDirect
Control Engineering Practice
0967-06

doi:10.1

� Corr

E-m

Pleas
batch
journal homepage: www.elsevier.com/locate/conengprac
Predictive functional control based on an adaptive fuzzy model of a hybrid
semi-batch reactor
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In this paper a new approach to the control of a nonlinear, time-varying process is proposed. It is based

on a recursive version of the fuzzy identification method and predictive functional control. First, the

recursive fuzzy identification method is derived, after which it is used in connection with fuzzy

predictive functional control to construct an adaptive fuzzy predictive functional controller. The

adaptive FPFC is then tested on a nonlinear, time-varying, semi-batch reactor process and compared

with the standard FPFC, which uses non-adaptive fuzzy model. The simulation results are promising;

they indicate that the control of time-varying, nonlinear processes with the FPFC can be improved with

the use of an adaptive fuzzy model. An improvement in reference tracking and disturbance rejection

can be observed, but the main advantage is the reduced number of switchings between hot and cold

water. This is an important improvement in the case of real applications.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In chemistry, pharmacy and biotechnology the batch reactor is
one of the most important parts of the process technology. The
control of a batch reactor is essentially a problem of temperature
control, which is difficult to overcome. The difficulties arise from
the mixed continuous and discrete nature of the process behavior,
the various uses of these reactors, the drastic changes in the set-
point during the operation, and the different modes of operation.
Large numbers of reactors are semi-batch reactors in which the
initial mixture of material is placed. The mixture is then heated to
the desired temperature and additional reactant is added to the
vessel during the procedure. The volume in the reactor varies,
tending to increase with time, as does the heat-transfer surface
of the reactor. From the dynamics point of view the reactor
represents a time-varying process with unknown parameters. The
optimal operation of the semi-batch reactor is to follow the
reference trajectory, which is defined by a technological recipe, as
precisely as possible and without overshoot (Škrjanc, 2008).

In the literature a number of papers have been published that
discuss the control of semi-batch reactors and various types of
controllers were studied. The control schemes up to 1986 are given in
Juba and Hamer (1986). Since then many different concepts of semi-
batch reactor control were developed. The most promising of these
were the concepts of adaptive control (Chen, Bastin, & Van
Breusegam, 1995; Louleh, Cabassud, & Le Lann, 1999), optimal
ll rights reserved.
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control (Chang & Hseih, 1991; Cuthrell & Biegler, 1989; Luus &
Okongwu, 1999) and especially model predictive control schemes,
which are the most frequently used (Clarke, 1994; Clarke, Mohtadi, &
Tuffs, 1987; De Vries & Verbruggen, 1994; Foss, Johansen, & Sorensen,
1995; Henson & Seborg, 1995; Lakshmanan & Arkun, 1999; Loeblin,
Perkin, Srinivasan, & Bonvin, 1999). Model predictive control was very
successful in solving many industrial control problems (Bequette,
1991; Clarke & Mohtadi, 1989; Cutler & Ramaker, 1980). Two of the
most frequently used predictive schemes in practice are the predictive
functional control scheme (Richalet, 1993) and the fuzzy predictive
functional control scheme (Škrjanc & Matko, 2000), which was also
used as a base algorithm in this study. In Karer, Škrjanc, and Zupančič
(2008) and in Škrjanc (2007) studies of adaptive predictive control for
semi-batch reactor can also be found.

Predictive control based on the fuzzy model (FPFC) proved to
be very convenient for nonlinear processes (Lepetič, Škrjanc,
Chiacchiarini, & Matko, 2003; Škrjanc & Matko, 2001). The method
is based on the fact that a smooth nonlinear process can be
represented by a set of linear models in the form of a Takagi–
Sugeno fuzzy model (Takagi & Sugeno, 1985; Wang, 1994).

When dealing with nonlinear, time-varying processes, like the
example presented in this paper (semi-batch reactor process),
the fuzzy model should update (adapt) itself to new process
conditions in order to maintain the quality of the control.
Therefore, an on-line fuzzy identification method should be used
to properly adapt the membership functions and parameters of
the Takagi–Sugeno model.

There are many methods that deal with on-line fuzzy model
identification, for example, the evolving fuzzy neural network
(EFuNN) (Kasabov, 2001), the dynamic evolving neural-fuzzy
nal control based on an adaptive fuzzy model of a hybrid semi-
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inference system algorithm (DENFIS) (Kasabov & Song, 2002), the
evolving Takagi–Sugeno model (eTS) (Angelov & Filev, 2004),
the self-organizing fuzzy neural network (SOFNN) (Qiao & Wang,
2008), the generalized adaptive neuro-fuzzy inference system
(GANFIS) (Azeem, Hanmandlu, & Ahmad, 2003) and others
(Angelov, 1995; Deng & Kasabov, 1991; Juang & Lin, 1998; Lin,
1995; Lin, Lin, & Shen, 2001; Patt, 1991; Rong, Sundararajan,
Huang, & Saratchandran, 2006; Tzafestas & Zikidis, 2001; Wu & Er,
2000; Wu, Er, & Gao, 2001). The fuzzy model identification is
composed of the identification of the membership functions’
parameters’ and the identification of the sub-models’ parameters.
For the sub-models’ parameters identification a recursive least-
square method is used. The identification of the membership
functions’ parameters is made using clustering methods. This is
the part where the above-mentioned methods differ. For example,
DENFIS uses the evolving clustering method (ECM) (Kasabov &
Song, 2002), eTS uses the recursive version of subtractive
clustering (Fritzke, 2004) and the SOFNN uses the rival penalized
algorithm (RLPC) (Xu, Krzyzak, & Oja, 1993).

In this paper a version of the on-line fuzzy-identification
method was derived. The proposed method is a recursive version
of the established fuzzy c-means identification method. The
identification method is similar to Angelov and Filev’s on-line
clustering (Angelov & Filev, 2004). The difference is that their
method is based on the subtractive clustering off-line method
(Chiu, 1994), whereas the proposed method is based on the fuzzy
c-means off-line clustering method (Bezdek, 1981). The positions
of the centers in the proposed method depend on a weighted
mean of the data belonging to the i-th cluster, whereas with
Angelov’s method the centers can only be the data samples
with the largest potential. Also, the width of the membership
function in the proposed method depends on the fuzzy variance
and changes depending on the data pattern, whereas with
Angelov’s method the width is fixed and predefined. Both methods
use the Gaussian membership functions. The local linear sub-
models are, in both cases, updated with recursive least squares.

The developed recursive fuzzy identification algorithm is
then used in connection with the recursive least squares to obtain
the membership functions’ parameters and the parameters of
the fuzzy model. The adaptive fuzzy model is implemented in the
predictive functional control algorithm to construct the adaptive
FPFC algorithm. Together they form the indirect adaptive fuzzy
controller. The idea of recursive fuzzy c-means clustering can also
be used as a self-tuning method for the proposed controller.

Over the past decade a lot of work has been done in the field of
adaptive fuzzy logic control. In general the schemes can be divided
into direct and indirect adaptive schemes. The direct schemes
approximate the ideal controller with fuzzy logic (Boulkroune,
Tadjine, Saad, & Farza, 2010; Chen, Tan, Han, & Wang, 1997; Kim,
Kim, & Park, 1996; Labiod & Guerra, 2007; Lee, Lee, & Kang, 1996;
Salehi & Shahrokhi, 2008; Tong, He, Li, & Zang, 2010; Tong, Li, & Shi,
2009; Wang, 1993). The indirect schemes use a fuzzy system to
approximate the plant dynamics (Chan, Rad, & Wang, 2001; Golea,
Golea, & Benmahammed, 2003; Qi & Brdys, 2008; Wang, Ge, & Lee,
2000; Wang, Rad, & Chan, 2001). The adaptive fuzzy schemes
usually apply only the adaptation of the sub-models’ parameters
(consequent parameters) and not also the width and centers of the
membership functions (premise parameters) as in the proposed
method. The membership functions are usually predefined and
kept constant, only the sub-models’ parameters of the fuzzy model
are adapted. Very few versions apply the adaptation of both: In
Singh (1998) a direct approach that uses triangular membership
functions and the adaptation of its centers is proposed. In Phan and
Gale (2008) a direct algorithm that also uses triangular member-
ship functions is proposed. The algorithm adds or replaces the
membership functions depending on the error threshold. A direct
Please cite this article as: Dovžan, D., & Škrjanc, I. Predictive functio
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approach is also proposed in Rojas et al. (2006). The approach uses
triangular functions and tries to find the membership function
configuration that distributes a certain performance criterion
homogeneously through out the operating regions. The approach
presented uses the squared error as a performance criterion. The
indirect adaptive approach is proposed in Qi and Brdys (2008). The
approach uses Gaussian membership functions and adapts both the
width and the centers. The adaptation of the centers and the
widths of the membership functions is done using a gradient
decent algorithm and the adaptation of sub-models’ parameters is
done using recursive least squares. The approach is similar to the
one described here. The difference is that the proposed algorithm
uses the recursive fuzzy c-means method to adapt the width and
the centers of the membership functions.

The adaptive FPFC developed in this paper is compared to the
non-adaptive FPFC. The results show that the adaptive controller
can cope with the change of the system dynamics and can
maintain the quality of the control. The advantage of the adaptive
version is that the model adapts itself to the new process
dynamics. The fuzzy model can therefore also be used not only
for the FPFC control algorithm but also for parallel fault detection.

The paper is organized in the following fashion. First, the
recursive fuzzy c-means clustering algorithm is derived. Then
the idea of fuzzy predictive control is explained and the control
law is given. Then follows the description of the semi-batch
reactor process. Finally, the simulation results are presented and
the adaptive fuzzy predictive functional control is compared to
fuzzy predictive control.
2. Fuzzy c-means and recursive fuzzy c-means clustering

The fuzzy model represents nonlinear mapping between the
input and output variables. Dynamic systems are usually
modelled by feeding back the delayed input and output signals.
The common nonlinear model structure is nonlinear autoregres-
sive with an exogenous (NARX) input model:

ŷðkþ1Þ ¼ FðyðkÞ, . . . ,yðk�nþ1Þ,uðkÞ, . . . ,uðk�mþ1ÞÞ ð1Þ

where the y(k),y,y(k�n+1) and u(k),y,u(k�m+1) denote the
delayed model input and output. The fuzzy model approximates
the function F. The model can be obtained by means of modelling
or using identification methods. Fuzzy models utilize the idea of
linearization in a fuzzily defined region of the state space. The
nonlinear model is decomposed into a multi-model structure
consisting of linear models (Johanson & Murray-Smith, 1981).
Some of the most useful and wide spread fuzzy models are the
Takagi–Sugeno fuzzy models.

The model identification of the Takagi–Sugeno model consists
of the identification of the clusters (fuzzy regions) and the
identification of the linear sub-models’ parameters that are valid
for a certain cluster. The identification of the clusters can be made
using clustering algorithms such as fuzzy c-means and the
parameter estimation can be made using a least-squares method.

2.1. The fuzzy c-means clustering

The c-means clustering algorithm clusters the data into a
predefined number of clusters. An assumption that each
observation consists of m samples is made. They are
grouped into an m-dimensional vector x(k)T

¼[x1(k),y,xm(k)],
xðkÞARm, where xm(k) stands for the m-th measurement
at the time instant k. A set of n observations is then denoted as
X ¼ fxðkÞjk¼ 1,2, . . . ,ng, XARn�m.

The main objective of the clustering is to partition the data set
X into c subsets, which are called clusters. The data matrix X is
nal control based on an adaptive fuzzy model of a hybrid semi-
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given as follows:

X ¼

x1ð1Þ x2ð1Þ . . . xmð1Þ

x1ð2Þ x2ð2Þ . . . xmð2Þ

^ ^ ^ ^

x1ðnÞ x2ðnÞ . . . xmðnÞ

2
66664

3
77775 ð2Þ

The data vector at the time instant k is defined as (the rows of the
matrix X) xðkÞT ¼ ½x1ðkÞ, . . . ,xmðkÞ�,xðkÞARm. The fuzzy partition of
the set X is a family of fuzzy subsets fAij1r ircg. These fuzzy
subsets are defined by their membership functions, which are
implicitly defined in the fuzzy partition matrix U ¼ ½miðkÞ�ARc�n.
The i-th row of the matrix U contains the values of the membership
function of the i-th fuzzy subset Ai of the data matrix X. The partition
matrix satisfies the following conditions: the membership degrees
are real numbers from the interval miðkÞA ½0,1�,1r irc,1rkrn;
the total membership of each of the samples in all the clusters
equals one

Pc
i ¼ 1 miðkÞ ¼ 1,1rkrn; and none of the fuzzy clusters

is empty nor do any contain all the data 0o
Pn

k ¼ 1 miðkÞon,
1r irc. This means that the fuzzy partition matrix U belongs to the
fuzzy partition set, which is defined as

M¼ UARc�n
jmiðkÞA ½0,1� 8i,k;

Xc

i ¼ 1

miðkÞ ¼ 1,8k;0o
Xn

k ¼ 1

miðkÞon 8i

( )

ð3Þ

The c-means algorithm for clustering in n dimensions produces
c-mean vectors that represent c classes of data. The algorithm relies
on a distortion measure d(x(k), vi) between the points in data space
xðkÞ,viARm, where x(k) denotes a certain point in that space, an
observation, and vi stands for the centroid. A variety of different
norms can be used to define the distortion measure, such as L1, L2

and L1, or any other that is specific to the problem. The algorithm
is based on a minimization of the fuzzy c-means objective function,
which is introduced as the weighted-criterion function

JðX,U,VÞ ¼
Xc

i ¼ 1

Xn

k ¼ 1

ðmiðkÞÞ
Zd2ðxðkÞ,viÞ ð4Þ

subject to the constraints

Xc

i ¼ 1

miðkÞ ¼ 1 8k ð5Þ

where V is a matrix of cluster centroid vectors vi, V¼[v1,yvc]
T, and

the overlapping factor or the fuzziness parameter Z that influences
the fuzziness of the resulting partition is denoted as Z; from the
hard (Z¼ 1) to the partition that is completely fuzzy (Z-1). In the
proposed approach the standard value Z¼ 2 is used. In the case of
the classical c-means clustering algorithm the distortion measure is
defined as L2 norm.

The problem of finding the fuzzy clusters in the data set X is
now solved as a constrained optimization problem using Lagrange
multipliers, which consider the minimization of the function in
Eq. (4) over the domain X, and taking into account the constraints
in Eq. (5). The minimum is obtained via the Lagrange multipliers
method and is given as follows:

miðkÞ ¼ d2
ik

Xc

j ¼ 1

1

d2
jk

 !1=ðZ�1Þ
0
@

1
A
�1

ð6Þ

where dik defines the Euclidian distance (L2-norm) between the
observation x(k) and the cluster centroid vi as follows:

d2
ik ¼ ðxðkÞ�viÞ

T
ðxðkÞ�viÞ, 1r irc, 1rkrn ð7Þ

The cluster centroid vi is defined as the weighted mean of the
data belonging to the i-th cluster, where the weights are the
Please cite this article as: Dovžan, D., & Škrjanc, I. Predictive functio
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membership degrees and are given as follows:

viðkÞ ¼

Pn
k ¼ 1 m

Z
i ðkÞxðkÞPn

k ¼ 1 m
Z
i ðkÞ

ð8Þ

2.2. The recursive fuzzy c-means

When the behavior of the process that generates the observed
data changes over time, the clustering should be done
recursively to obtain the clusters that describe the current
behavior. To develop the recursive fuzzy clustering algorithm,
first the cluster centroid vector vT

i ¼ ½vi1, . . . ,vim � is defined,
according to the current observation, i.e., the weighted mean of
the data according to the current membership degrees. This
introduces the notation vi(r), which means the cluster centroid at
the time instant r that is obtained by weighting with the current
membership degrees. Form Eq. (8) the cluster centroid in the next
observation is derived

viðrþ1Þ ¼

Pr
k ¼ 1 m

Z
i ðkÞxðkÞþm

Z
i ðrþ1Þxðrþ1ÞPr

k ¼ 1 m
Z
i ðkÞþm

Z
i ðrþ1Þ

ð9Þ

where miðkÞ,k¼ 1, . . . ,rþ1 denotes the membership degree of
the observation vector x(k)T

¼[x1(k),y,xm(k)], k¼1,y,r+1 to the
cluster i at the time instant k. Introducing the relation between
the old cluster centroid and a new one is as follows:

viðrþ1Þ ¼ viðrÞþDviðrþ1Þ ð10Þ

and taking into account Eq. (9) the following is obtained:

Dviðrþ1Þ ¼
mZi ðrþ1Þðxðrþ1Þ�viðrÞÞPr

k ¼ 1 m
Z
i ðkÞþm

Z
i ðrþ1Þ

ð11Þ

The cluster centroid increment in Eq. (11) cannot be calculated in
the present form because the denominator in Eq. (11) cannot be
recursively calculated. The calculation of the membership degrees
requires all past r observations. This is against the recursive
approach. An approximate calculation of this term can be made by
introducing the exponential weighting of the past membership
degrees, which are calculated at each time instant. The weights of
the past data are decreasing exponentially.

Let us denote the term in the denominator of Eq. (11) as
siðrþ1ÞARc . This is calculated as

siðrþ1Þ ¼ siðrÞþm
Z
i ðrþ1Þ ð12Þ

where si(r) is defined as follows:

siðrÞ ¼
Xr

k ¼ 1

mZi ðkÞ ð13Þ

Introducing the forgetting factor, Eq. (12) can be rewritten as

siðrþ1Þ ¼ gvsiðrÞþm
Z
i ðrþ1Þ ð14Þ

The parameter gv, (0rgvr1) denotes the forgetting factor of a
past observation, i.e., the forgetting factor of the past membership
degrees. The Dviðrþ1Þ can now be written as

Dviðrþ1Þ ¼
mZi ðrþ1Þðxðrþ1Þ�viðrÞÞ

siðrþ1Þ
ð15Þ

The current membership degree miðrþ1Þ is next defined as
follows:

miðrþ1Þ ¼ d2
i,rþ1

Xc

j ¼ 1

1

d2
j,rþ1

 !1=ðZ�1Þ
0
@

1
A
�1

ð16Þ

where di,r +1
2 defines the quadratic distance from the cluster

centroid as follows:

d2
i,rþ1 ¼ ðxðrþ1Þ�viðrÞÞ

T
ðxðrþ1Þ�viðrÞÞ, 1r irc ð17Þ
nal control based on an adaptive fuzzy model of a hybrid semi-
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Around each cluster centroid the distribution of the data can
be described using the fuzzy covariance matrix, FiðrÞARm�m,
i¼ 1, . . . ,c and r stands for the number of samples used to
calculate the matrix. The fuzzy covariance matrix is defined by the
weighted covariance matrix as follows:

FiðrÞ ¼

Pr
k ¼ 1 m

Z
i ðkÞðxðkÞ�vr

i ÞðxðkÞ�vr
i Þ

TPr
k ¼ 1 m

Z
i ðkÞ

ð18Þ

where vi
r stands for the centroid vector of the i-th cluster

calculated for the set of r samples. The fuzzy covariance matrix
for the next sample (r+1) can be expressed as follows:

Fiðrþ1Þ ¼

Pr
k ¼ 1 m

Z
i ðkÞðxðkÞ�vrþ1

i ÞðxðkÞ�vrþ1
i Þ

TPr
k ¼ 1 m

Z
i ðkÞþm

Z
i ðrþ1Þ

þ
mZi ðrþ1Þðxðrþ1Þ�vrþ1

i Þðxðrþ1Þ�vrþ1
i Þ

TPr
k ¼ 1 m

Z
i ðkÞþm

Z
i ðrþ1Þ

, ð19Þ

where vi
r +1 stands for the centroid vector of the i-th cluster

calculated for the set of r+1 samples. Taking into account Eq. (18),
introducing it into Eq. (19), and using Eqs. (12) and (13),
the following approximate recursive expression for the fuzzy
clustering matrix is obtained

Fiðrþ1Þ ¼ gc

siðrÞ

siðrþ1Þ
FiðrÞþ

mZi ðrþ1Þ

siðrþ1Þ
� ðxðrþ1Þ�viðrþ1ÞÞ

�ðxðrþ1Þ�viðrþ1ÞÞT ð20Þ

2.3. The identification of the sub-models

The centers of the fuzzy clusters and their distribution are used
to define the new membership functions’ distribution, and
using the recursive least-squares method the fuzzy model is
obtained. Using the projection of the cluster onto the independent
variables, the input membership functions are obtained. The first
m�1 measured variables in the data vector x(k) represent the
input variables and the last m-th variable represents the output. In
the proposed method the clusters are approximated by
the Gaussian membership functions, with the center vi and the
variance s2

i ¼ Z
2
m

Pm
j ¼ 1 fi,j, where using Zm the overlapping be-

tween the membership functions is defined and fi,j stand for the
diagonal elements of the matrix Fi. The membership function of the
i-th cluster and the j-th component of x(k) is therefore defined as

miðxjðkÞÞ ¼ e�ððxjðkÞ�vijðkÞÞðxjðkÞ�vijðkÞÞ
T
Þ=2s2

i
ðkÞ, i¼ 1, . . . ,c, j¼ 1, . . . ,m�1

ð21Þ

Each of the m�1 input variables defines the input subspace. The
whole input hyperspace is defined as a Cartesian product of these
subspaces. This implies the definition of the membership degree in
each subspace as the product of the membership degrees, as follows:

biðkÞ ¼
Ym�1

j ¼ 1

miðxjðkÞÞ ð22Þ

The fuzzy recursive least-squares algorithm is then obtained as
follows:

cT
i ðkþ1Þ ¼ biðkÞ½1,x1ðkÞ,x2ðkÞ, . . . ,xm�1ðkÞ�

yiðkÞ ¼ biðkÞxmðkÞ

Piðkþ1Þ ¼
1

lr
PðkÞ�

PiðkÞciðkþ1ÞcT
i ðkþ1ÞPiðkÞ

lrþc
T
i ðkþ1ÞPiðkÞciðkþ1Þ

 !

yiðkþ1Þ ¼ yiðkÞþPiðkÞciðkþ1ÞðyiðkÞ�c
T
i ðkþ1ÞyiðkÞÞ ð23Þ

where lr stands for the exponential forgetting factor, which should
be set between 0.98 and 1 to deal with time-varying processes, Pi
Please cite this article as: Dovžan, D., & Škrjanc, I. Predictive functio
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stands for the covariance matrix, which is set to Pið0Þ ¼ 102
2105I,

IARm�m, and yi represents the parameters of the i-th local model
and is written as follows:

yT
i ¼ ½yi,0,yi,1,yi,2, . . . ,yi,m�1� ð24Þ

Each local model contributes to the output of the model with
the corresponding membership value. The whole set of fuzzy
model parameters can be written in the matrix as follows:

Y¼ ½y1, y2, . . . , yc� ð25Þ

3. Predictive functional control based on the fuzzy model

Model-based predictive control (MPC) is a control strategy
based on the explicit use of a dynamic model of the process. The
model is used to predict the future behavior of the process output
signal over a certain finite horizon and to evaluate control actions
to minimize a certain cost function. The predictive control law is
in general obtained by minimizing of the following criterion:

Jðu,kÞ ¼
XN2

j ¼ N1

ðymðkþ jÞ�yrðkþ jÞÞ2þl
XNu

j ¼ 1

u2ðkþ jÞ ð26Þ

where ym(k+ j), yr(k+ j) and u(k+ j) stand for the j-step-ahead
prediction of the process output signal, the reference trajectory
and the control signal. N1, N2 and Nu are the minimum, maximum
and control horizon. l weights the relative importance of the
control and output variables.

MPC stands for a collection of several different techniques all
based on the same principles. Originally, the algorithms were
developed for linear systems, but the basic idea of prediction has
been extended to nonlinear systems (Clarke, 1994; Doyle,
Ogunnaike, & Pearson, 1995). In the fuzzy predictive functional
control the fundamental principles of predictive functional
control are applied. These principles are very strong and easy to
understand (Richalet, 1993; Richalet, Rault, Testud, & Papon,
1978).

The global, linear, first-order model of a smooth nonlinear
process is described by the following difference equation with
global linear parameters:

ymðkþ1Þ ¼ ~amymðkÞþ ~bmuðkÞþ ~rm ð27Þ

When using the Takagi–Sugeno fuzzy model with first-order sub-
models, the model output ym and the global parameters are
calculated in the following fashion. The output of the i-th sub-
model is

ym,iðkþ1Þ ¼ am,iym,iðkÞþbm,iuðkÞþrm,i ð28Þ

The global model output depends on the input data vector
x(k)T

¼[ym(k) u(k)]. First, the membership degrees of the input
data vector to the i-th cluster are calculated using Eqs. (21) and
(22) (note that this vector contains only the input variables).
Using the vector of membership degrees and the input data vector
the output of the global model can be calculated:

ymðkþ1Þ ¼Yb
1

xðkÞ

" #
ð29Þ

where bT
¼ ½b1, . . . ,bc� and

Y¼

rm,1, . . . , rm,c

am,1, . . . , am,c

bm,1, . . . , bm,c

2
64

3
75 ð30Þ

The multiplication of the Y and b matrices gives us the
matrix under Eq. (31), from which the global parameters of the
nal control based on an adaptive fuzzy model of a hybrid semi-
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Fig. 1. The scheme of a semi-batch reactor process.
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Takagi–Sugeno model are obtained.

b1rm,1þ � � � þbcrm,c

b1am,1þ � � � þbcam,c

b1bm,1þ � � � þbcbm,c

2
64

3
75 ð31Þ

From the elements of the matrix under Eq. (31) the global
parameters can be written as

~am ¼ b1am,1þ � � � þbcam,c ð32Þ

~bm ¼ b1bm,1þ � � � þbcbm,c ð33Þ

~rm ¼ b1rm,1þ � � � þbcrm,c ð34Þ

Now the global linear model (Eq. (27)) is obtained. To derive
the control law for fuzzy predictive functional control first the
desired closed-loop behavior is specified. This is specified by the
reference-trajectory given by the reference-model Eq. (35).

yrðkþ1Þ ¼ aryrðkÞþð1�arÞwðkÞ ð35Þ

This ensures that the reference output tracks a constant reference
signal w. The control law is obtained from minimizing the
criterion function Eq. (26). In fuzzy predictive functional control
a single horizon is assumed N1¼N2¼H. This is called the
coincidence horizon. For this horizon the predicted output value
coincides with the reference trajectory. Taking into account the
constant future control, the control law can be derived:

uðkÞ ¼
ð1�aH

r ÞðwðkÞ�ypðkÞÞ
~bm

1� ~am
ð1� ~aH

mÞ

þ
ymðkÞ
~bm

1� ~am

�
~rm

~bm

ð36Þ

A detailed derivation of the control law can be found in Škrjanc
and Matko (2000).
4. The semi-batch reactor regulation

4.1. The process description

The method was tested on a model of a real semi-batch reactor
stationed in a pharmaceutical company. A scheme of the semi-
batch reactor is shown in Fig. 1. Dynamically, it is an example of a
hybrid plant. The goal is to control the temperature of the
ingredients stirred in the reactor’s core, so that they synthesize
optimally into the final product. In order to achieve this the
temperature has to follow, as accurately as possible, the pre-
scribed reference trajectory, with as low overshoot as possible.

The reactor’s core (temperature T) is heated or cooled through the
medium in the reactor’s jacket (temperature Tj). These are also the
measured outputs of the process. The medium in the jacket is a
mixture of fresh input glycol, which enters the reactor through on/off
valves, and reflux glycol. The temperature of the fresh, input glycol
depends on whether the vC is open or the vH is open. If vC¼1 then
vH¼0 and the input glycol temperature will be Tin ¼ TC ¼�25 3C, and
if vH¼1 then vC ¼0 and the input glycol temperature will be
Tin ¼ TH ¼ 130 3C. The ratio of fresh glycol to reflux glycol is controlled
by a third input, i.e., by the position of the mixing valve vm, which is
limited to the range [0 1]. The temperature of the mixed glycol (Tjin)
is not measured, but it can be estimated using the temperature of the
input glycol, the jacket glycol temperature and the position of the
valve. The time constants of the on/off valves and the mixing valves
were neglected in this case. The mathematical model of the semi-
batch reactor is defined by the differential Eqs. (37), (38), (40)–(42)
and the algebraic Eqs. (39), (43).

mjcj

dT j

dt
¼ vmFcjTinþð1�vmÞFcjTj�FcjTj�hSðTj�TÞ�h0S0ðTj�T0Þ

ð37Þ
Please cite this article as: Dovžan, D., & Škrjanc, I. Predictive functio
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mc
dT

dt
¼ hSðTj�ðTþDTdðt�TiÞÞÞ ð38Þ

DT ¼
mficfiðTfi�TÞ

mcþmficfi
ð39Þ

where mj stands for the mass of the glycol in the jacket, cj is the heat
capacity of the glycol in the pipes, F is the mass flow in the pipes of
the jacket, h is the heat-transfer coefficient from the jacket to the
reactor’s core. S represents the conduction area. The heat-transfer
coefficient from the jacket to the surroundings is h0 and S0 represents
the conduction area. The temperature of the surrounding is T0. During
the procedure more ingredients are added. This causes a change in
the mass (m) of ingredients in the reactor, the heat capacity (c), the
conduction area (S) and the temperature (T). These changes are much
faster than the dynamics of the process; therefore, they can be
modelled as discontinuous jumps. The jumps, which occur at time
instants ti are Dirac impulses dðt�tiÞ. The discontinuous phenomenon
of the system state (T) is modelled as follows from Eq. (38). The state
jump (DT) is defined in Eq. (39), where mfi stands for the mass of the
ingredient added to the reactor at the time instant ti, cfi defines
the heat capacity of the ingredient that is added and Tfi stands for the
temperature of the ingredient at the time of loading. The variation of
the mass inside the reactor is given in Eq. (40). Eq. (41) denotes the
change in the average heat capacity of the mixture inside the reactor,
where Dci ¼ ðcfi�cÞmfi=ðmþmfiÞ.

dm

dt
¼mfidðt�tiÞ ð40Þ

dc

dt
¼Dcidðt�tiÞ ð41Þ

The time-varying profile of the conduction surface, S, is given in
Eq. (42):

dS

dt
¼ Sfidðt�tiÞ ð42Þ

where Sfi stands for the change of the conduction surface at time ti,
due to the added ingredient. This is roughly modelled as
Sfi ¼ Sðmfi=mÞ.

The temperature in the reactor is controlled indirectly by the
input jacket temperature (Tjin), which is now called the indirect
control variable. Tjin depends on the position of the mixing valve
and on the temperature of the fresh glycol Eq. (43):

Tjin ¼ vmTinþð1�vmÞTj ð43Þ

When using glycol for heating and cooling the reactor core,
a nonlinear process characteristic is obtained. The heat-transfer
nal control based on an adaptive fuzzy model of a hybrid semi-
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coefficient from the jacket to the reactor’s core is a nonlinear
function of the temperature of the glycol in the jacket. Also, the
heat capacity of the glycol in the jacket changes with its tem-
perature. The approximate characteristic of the heat-transfer
coefficient is shown in Fig. 2 (top graph), where the heat capacity
is also shown (bottom graph).
4.2. The control of the process

The control of this process will be based on the indirect control
variable (Tjin). This will then be transformed into the positions of
the control elements, i.e., the position of the mixing valve (vm) and
the positions of the discrete valves (vC and vH). In order to do that
a certain logic was introduced. First, if the reference is greater
than the surrounding temperature T0, which is kept constant then
the switching is done as

if eðkÞo�dd then TinðkÞ ¼ TC ðvC ¼ 1,vH ¼ 0Þ

elseif eðkÞ4�du then TinðkÞ ¼ TH ðvC ¼ 0,vH ¼ 1Þ

else TinðkÞ ¼ Tinðk�1Þ, ð44Þ
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Fig. 2. The characteristic of the heat-transfer coefficient (top graph) and the glycol

heat capacity (bottom graph).
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where dd and du are switching thresholds and e(k) is the control
error.

If the reference is below or the same as the surrounding
temperature the switching is done as:

if eðkÞ4dd then TinðkÞ ¼ TH ðvc ¼ 0,vh ¼ 1Þ

elseif eðkÞodu then TinðkÞ ¼ TC ðvc ¼ 1,vh ¼ 0Þ

else TinðkÞ ¼ Tinðk�1Þ: ð45Þ

The logic behind this is that when the reference is above the
temperature of the surroundings, the cooling in the vicinity of the
reference can be done by cooling through the heat transfer from
the jacket to the surroundings. But hot water is needed for the
heating, and therefore the hot-water valve is kept open. And vice
versa applies when the reference is below the surrounding
temperature. Also, the saturation is added to the input of the
process, so that the absolute difference between the jacket
temperature and the reactor temperature is less than 601.

Because of the nonlinear characteristic of the process (Figs. 3
and 4), the fuzzy predictive functional controller, described in
Section 3, will be used. The Takagi–Sugeno fuzzy model can
adequately model the nonlinear characteristic of the plant. Using
16 clusters and the first-order model a similar static characteristic
to that of the plant is obtained. The comparison between the
model’s and the plant’s characteristic is shown in Figs. 3 and 4,
where the gain and the time constant are compared at different
working points.

When new ingredients are added to the reactor, the dynamics
of the reactor changes. To follow these changes and to properly
adjust the controller’s parameters, the recursive fuzzy identifica-
tion described in Section 2 was used.

The controller has a set of parameters to be tuned. First, there
are the parameters for the FPFC (ar and H) and then there are also
the parameters that affect the identification (forgetting factors,
overlapping factor, fuzziness number of clusters, etc.). Although
this is an adaptive controller, some prior knowledge of the process
is needed to set the parameters.

The time horizon (H) of the FPFC is usually chosen as

1rHr
Tr

2Ts
ð46Þ
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Fig. 3. Gain of the process (line with dots) and gain of the model (solid line).
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where Ts is the sampling time and Tr is the time constant of the
reference model (Škrjanc & Matko, 2000). The reference-model
time constant is usually chosen based on the time constant of the
process. In this case the reference-model (Tr) was chosen to be
five time faster than the process.

The forgetting factors affect the speed of the adaptation and
the smoothness of the estimates. For time-varying processes, the
factors must be lower than one to ensure the forgetting. However,
by lowering the forgetting factors the fluctuations of the
estimates will increase. The values that give a good result are:
lr � gv � gc � 0:9821. If the changes in the process can be
detected the forgetting factors can also be set to one, and when
a change is detected the variance matrices can be reset (Åstrom &
Wittenmark, 1995). A rule of thumb that indicates how many past
samples will affect the model is

N¼ 2=ðl�1Þ ð47Þ

where l is the forgetting factor and N is the number of samples
that affect the model.

The fuzziness factors define the smoothness of the nonlinearity
approximation. The higher they are the smoother the nonlinearity
obtained, but too high values cause a larger identification error.
The values that give a good result are: Zm ¼ from 0.25 to 1 and
Z¼ 2. The numbers of clusters are set based on a prior analysis of
the input–output space.
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Fig. 6. Controller output (top graph) and difference between the real input to the

process and the controller output (bottom graph).
5. Simulation

The adaptive fuzzy predictive functional control algorithm was
tested on the described process using a simulation. The study was
meant to show the potential of the proposed approach for further
use on real nonlinear processes with time-varying nonlinearities
and dynamics.

The process was simulated using the previously described
equations. The parameters were as follows: the initial mass in
the reactor core m¼600 kg, the conduction area S¼2 m2, the
heat capacity c¼4200 J kg�1 K�1 and the mass in the jacket
mj¼200 kg. The heat capacity of the glycol and the heat-transfer
coefficient from the jacket to the core were taken as shown in
Fig. 2. The heat-transfer coefficient from the jacket to the
Please cite this article as: Dovžan, D., & Škrjanc, I. Predictive functio
batch reactor. Control Engineering Practice (2010), doi:10.1016/j.cone
surroundings h0¼84 W m�2 K�1 and the conduction area
S0¼4 m2. The initial temperature was the same as the tempera-
ture of the surroundings Tjð0Þ ¼ Tð0Þ ¼ Tinð0Þ ¼ T0 ¼ 17 3C. To make
the simulation more real some noise, estimated from the real
plant data, was added to the process. The input Gaussian noise
of variance 0.03 was added to the reactor and jacket tem-
peratures. The output noise was Gaussian of variance 0.08. This
caused the output of the process (T) to vary for approximately
70.41 peak to peak. In the simulated experiment the reactor is
fed with an additional ingredient (Tfi¼17 1C, mfi¼1000 kg,
cfi¼4000 J kg�1 K�1).

For the identification algorithm and the controller the
following settings were chosen: the identification regression
vectors for the least squares were cT

i ðkþ1Þ ¼ biðkÞ½1Tðk�1Þ
Tinðk�1Þ�,i¼ 1, . . . ,c, the data vector was x(k)¼[T(k�1)
Tin(k�1)T(k)], and the sampling time was Ts¼20 s. The initial
covariance matrices for the least squares were set to Pi¼100I,
i¼1,y,c, and the forgetting factor was set to lr ¼ 1. The initial
values for the sub-models’ parameters were set to zero. Also, a
dead zone for the least squares was introduced to prevent bursting
nal control based on an adaptive fuzzy model of a hybrid semi-
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of the covariance matrix when there is little excitation. The
constant of the dead zone was set to 0.01. The initial fuzzy
covariance matrices were set to Fi¼1.5I, i¼1,y,c and the initial
value of si¼1, i¼1,y,c. The forgetting factors for the fuzzy
covariance matrices and si were set to gc ¼ 1 and gv ¼ 1. The
fuzziness factors were set as Z¼ 2 and the overlapping factor
Zm ¼ 0:3.

Because of the nature of the process, the disturbance was
detectable (the addition of ingredients). When the reference
signal is constant and the output T changes significantly a
disturbance is detected. At that time the covariance matrices Pi

are reset to their initial values and the past membership degrees
(si) and covariance matrices Fi of the fuzzy identification method
are also reset by setting gv ¼ gv ¼ 0:0001.

The controller parameters depend on the current model
parameters. The relation between the model parameter am and
the reference model parameter ar was set as ar ¼ ~a

5
m, and the
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horizon was set as H¼round(�0.5(log(ar))
�1). The switching

threshold dd was 1 1C and du was 0.5 1C.
In the experiment, first the fuzzy model of the plant was

identified using perturbation signals at different working points.
This model was then used as the initial model in the FPFC
algorithm. Using the recursive fuzzy identification method the
fuzzy model was updated during the regulation of the process.

In order to test the effectiveness of the adaptive FPFC, the
method was compared to the standard non-adaptive FPFC. Fig. 5
shows the output of the process during the experiment. The
output of the controller (the required value of the Tjin) is shown in
Fig. 6 in the top graph, and in the middle graph the difference
between the real and the required Tjin is presented. Fig. 7 shows
the positions of the mixing valve (bottom graph) and the hot-
water valve (top graph), from which the switchings between the
hot and cold water can be seen.

Because the initial fuzzy model approximates the process very
well, there is no major difference between regulation with the
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adaptive and the non-adaptive FPFC. But when a disturbance
occurs, in the form of adding new ingredients to the reactor, the
process dynamic changes. Now the response of the process
controlled with non-adaptive FPFC has an over-shoot. With the
adaptive FPFC control the model is adapted to new process
dynamics; therefore, the response has no over-shoot.

A detailed view of the disturbance rejection interval is shown
in Figs. 8–10. In Fig. 8 the output of the reactor is presented. Fig. 9
shows the controller output (top graph) and the difference
between the real input to the process and the controller output
(bottom graph). Fig. 10 shows the position of the hot water-valve
(top graph) and the position of the mixing valve (bottom graph). It
can be seen that the speed of the disturbance rejection is about
the same in both cases, but the overshoot is a bit smaller with the
adaptive control. There is also less switching between the hot and
cold water with the adaptive FPFC.

The interval after the addition is shown in Figs. 11–13. The
adaptive FPFC adapts the model to a new dynamic; therefore,
there is no overshoot, which is very important for controlling this
kind of process. The overshoot affects the quality of the product in
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batch reactor. Control Engineering Practice (2010), doi:10.1016/j.cone
the reactor. There is also less switching between the hot and cold
water.

The SSE values confirm the visual observations. The values were
calculated as an average over 10 experiments. The SSE between the
reference and the process output for the whole experiment is a little
better with the adaptive FPFC (7.69e4) than with the non-adaptive
FPFC (7.82e4). Also, switching between the hot and cold water is
better with the adaptive FPFC. The adaptive FPFC has 10, and the non-
adaptive FPFC has 18, switchings between the hot and cold water.
And probably the most important value, which tells us the accuracy of
the model is the SSE between the prediction (the internal model
output) and the real output of the process. This was noticeably better
with the adaptive control. The SSE between the model and process
output, from the time when the disturbance was regulated until the
end of the experiment, was 1.47e3 with the adaptive control and
6.68e4 with the non-adaptive control. The model predictions for the
adaptive FPFC are shown in Fig. 14 and for the non-adaptive in Fig. 15.
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6. Conclusion

This simulation study was made to elaborate the possible use
of a developed recursive fuzzy c-means clustering algorithm in
connection with fuzzy predictive functional control to construct
the adaptive FPFC. The adaptive version of the FPFC was compared
to the standard FPFC for a semi-batch reactor process. This is a
nonlinear process with time-varying parameters.

The results indicate that the adaptive fuzzy predictive
functional control can cope better with parameter changes than
the fuzzy predictive functional control. The disturbance response
as well as the response to a step reference change has less over-
shoot. This ensures better quality of the product. There is also less
switching between the hot and cold water, which is important for
the longevity of the actuators.

The adaptive fuzzy predictive functional control can be used to
improve the control of the time-varying nonlinear processes,
especially those where the instants of the changes can be detected
and where the parameters (nonlinearity) are constant (in the
sense of time dependency) over a long period of time and change
abruptly only occasionally.
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